
PACTree: A High Performance Persistent Range
Index Using PAC Guidelines

Wook-Hee Kim R. Madhava Krishnan Xinwei Fu Sanidhya Kashyap† Changwoo Min

Virginia Tech
†
EPFL

Abstract
Non-Volatile Memory (NVM), which provides relatively fast
and byte-addressable persistence, is now commercially avail-
able. However, we cannot equate a real NVM with a slow
DRAM, as it is much more complicated than we expect. In
this work, we revisit and analyze both NVM and NVM-
specific persistent memory indexes. We find that there is
still a lot of room for improvement if we consider NVM hard-
ware, its software stack, persistent index design, and con-
currency control. Based on our analysis, we propose Packed
Asynchronous Concurrency (PAC) guidelines for design-
ing high-performance persistent index structures. The key
idea behind the guidelines is to 1) access NVM hardware in
a packed manner to minimize its bandwidth utilization and
2) exploit asynchronous concurrency control to decouple
the long NVM latency from the critical path of the index.
We develop PACTree, a high-performance persistent

range index following the PAC guidelines. PACTree is a
hybrid index that employs a trie index for its internal nodes
and B+-tree-like leaf nodes. The trie index structure packs
partial keys in internal nodes. Moreover, we decouple the trie
index and B+-tree-like leaf nodes. The decoupling allows us
to prevent blocking concurrent accesses by updating internal
nodes asynchronously. Our evaluation shows that PACTree
outperforms state-of-the-art persistent range indexes by 7×
in performance and 20× in 99.99 percentile tail latency.

CCSConcepts: • Information systems Data structures;
Storage class memory.

Keywords: Non-volatile Memory, Index structures

ACM Reference Format:
Wook-Hee Kim R. Madhava Krishnan Xinwei Fu Sanidhya

Kashyap† Changwoo Min . 2021. PACTree: A High Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483589

Persistent Range Index Using PAC Guidelines . In ACM SIGOPS

28th Symposium on Operating Systems Principles (SOSP ’21), October

26–29, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3477132.3483589

1 Introduction
The introduction of byte-addressable non-volatile memory
(NVM), such as Intel’s Optane DC Persistent Memory (DCP-
MM), is breaking the traditional dichotomy of storage and
memory. Not only that, it is fundamentally changing the
way we design storage systems. For example, one of the core
components of storage systems is an index structure (e.g., B+-
tree, hash table) [50, 71] that file systems [13, 17, 18, 32, 37,
51, 55, 60, 70, 73], key-value stores [6, 34, 42, 47, 49, 59, 72],
and database systems [5, 12, 35, 54, 58, 61] use commonly.

Because of the recent commercialization of the NVM hard-
ware, prior works either emulated using the DRAM [7, 24,
38, 53, 63, 77] or partially utilized the real hardware poten-
tial [39, 45]. Moreover, recent performance characterization
studies [20, 21, 23, 31, 43, 62, 67, 68, 74] show that real NVM
hardware has a lot of discrepancy in comparison with the
DRAM. For example, all prior index-based works forgo the
impact of non-uniform memory access (NUMA). Although
the impacts of NUMA (e.g., NUMA-aware writes, memory
allocation) have already been studied in DRAM, this effect
is more pronounced in NVM (§3.2).
In this paper, we first propose a set of guidelines for de-

signing high-performance persistent indexes. We later use
them to design a novel persistent range index that follows
our design guidelines. To derive comprehensive guidelines
for designing high-performance persistent indexes, we holis-
tically analyze how current indexes work on the real NVM
hardware. In particular, we investigate how both the systems
software (e.g., persistent memory allocator) and NVM hard-
ware affect the design and overall performance. We conclude
that designing a high-performance persistent index goes be-
yond just making the DRAM index crash consistent. There
are several NVM unique design factors that critically impact
NVM rather than DRAM.
We organize our design guidelines from our analysis in

four parts: First, we present the key performance property of
NVM hardware one should consider in designing a persistent
index. One of our new findings is that the directory cache co-
herence protocol is the root cause of bandwidth meltdown in
the cross-NUMA NVM access. Second, we emphasize how to

424

https://doi.org/10.1145/3477132.3483589
https://doi.org/10.1145/3477132.3483589
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

use the system component. One of our findings is that NVM
memory allocation overhead is costly – much more costly
than DRAM allocation – and can be the primary performance
and scalability bottleneck. Third, we present several algo-
rithmic considerations for designing a persistent index. In
particular, we analyze two representative index design ap-
proaches: B+-tree and trie. We then compare how different
design choices in B+-tree and trie affect a persistent index’s
performance and scalability. A key finding is that NVM band-
width will be the first performance bottleneck in many cases.
Lastly, we present the considerations in concurrency con-
trol. One critical finding is that the performance impact of
structural modification operations (SMOs), i.e., operations
modifying the structure, is more significant in NVM than
DRAM.
To sum up, our guidelines have two key takeaways: In a

persistent index, 1) the fundamental performance-limiting
factor is the limitedNVMbandwidth and 2) the critical source
of scalability bottleneck is the longer blocking time in crit-
ical path due to SMOs, which is further amplified by high
write latency of NVM. We propose that a persistent index’s
design should perform packed NVM access to save the NVM
bandwidth and exploit asynchronous concurrency to avoid
the longer blocking time of SMOs. We call our guidelines
Packed, Asynchronous Concurrency (PAC) guidelines.
Using the proposed PAC guidelines, we designed a new

persistent range index PACTree. PACTree is a hybrid in-
dex consisting of an optimized trie for internal nodes (search
layer) and B+tree-like leaf nodes (data layer). The optimized
trie consumes lower NVM bandwidth than B+-tree because
it encodes partial keys in each level. Meanwhile, the B+-tree
style slotted leaf nodes reduce NVM allocation overhead.
Moreover, the slotted leaf nodes speed up scan operation
because the sequential reads to a leaf node exploit the CPU-
level and NVM-level hardware prefetcher, hiding NVM ac-
cess latency. We decoupled the search layer and the data
layer that allows enables PACTree to keep the cascading
SMOs off the critical path i.e., when the SMO of a leaf node
happens, PACTree asynchronously updates the search layer
to prevent costly SMOs blocking concurrent access. Unlike
prior persistent indexes [8, 45, 57, 76] that place internal
nodes on the DRAM to reduce the access latency, our decou-
pled index design allows PACTree to place even its search
layer on the NVM. This placement enables a near-instant
recovery as well as good capacity scaling.

PACTree supports durable linearizability [30]—a stan-
dard correctness condition for NVM data structures. We
thoroughly evaluate PACTree on two NVM machines with
varying NVM bandwidth. Our evaluation results show that
PACTree significantly outperforms the state-of-the-art per-
sistent range indexes in performance, scalability, and tail
latency. In summary, this paper contributes the following:
• Analysis. We thoroughly analyze how prior persistent
indexes work on real NVM hardware.

DRAM

Core

 L1 & L2

LLC Cache

Mesh Interconnect

WPQiMC iMC NVM

NVM

NVM

UPI

NUMA 1

ADR Domain

eADR Domain

 WPQ

Optane DCPMMXPController

XPBuffer

3D-Xpoint
Media AIT

Directory
Information

XPLine: 256B

Data

iMC

DDR-T
Cacheline: 64B

From CPU

DRAM

N
U

M
A

 0

Core

 L1 & L2

XPPrefetcher

Per-NUMA NVM device (e.g., /dev/pmem1)

Figure 1. Architecture of byte-addressable NVM systems and the
internal architecture of Intel Optane NVM (DCPMM).

• The PAC Guidelines. Based on the analysis, we derive
15 design guidelines, collectively named Packed, Asynchro-
nous Concurrency (PAC), for high-performance persistent
index. The PAC guidelines covers four different aspects:
NVM hardware, NVM software stack, index algorithm de-
sign, and concurrency control.

• Novel Persistent Range Indexes. We propose PACTree,
a new Persistent range index following the PAC guidelines.
PACTree is a hybrid index of an optimized trie for internal
nodes and B+-tree-like leaf nodes. For the optimized trie,
we propose PDL-ART, which is a persistent Adaptive Radix
Tree (ART) supporting durable linearizability.

• Evaluation. Our evaluation shows that PACTree outper-
forms the state-of-the-art persistent range indexes by 7×
in performance and 20× in 99.99 percentile tail latency.

2 Background

2.1 Non-Volatile Memory

Figure 1 shows the architecture of NVM systems and the
internal architecture of Optane NVM. NVM systems sup-
port one of two persistent domains: (1) Asynchronous DRAM
Refresh (ADR) mode and (2) enhanced ADR (eADR) mode.
In the ADR mode, NVM, write pending queue (WPQ) in an
integrated memory controller (iMC) are part of the persistent
domain. Since the CPU caches are volatile, programs must
explicitly flush cache lines using cache-line flush instruc-
tions and enforce ordering using memory fence instructions
to be crash consistent. In the eADR mode, other than WPQ,
the CPU caches are also part of the persistent domain, so
programs do not explicitly flush cache lines. Since the eADR
mode is still not available, we focus on the ADR mode.
OptaneNVM internals. TheCPUmemory controller (iMC)
communicates with the Optane NVM in the cache-line granu-
larity (64-byte), while NVM accesses data at a coarser granu-
larity: 256-byte (XPLine). Thus, a single cache-line size write
can cause a read-modify-write of a 256-byte XPLine, causing
write amplification generally. The Optane controller has a
write-combining buffer (XPBuffer) and an associated XPLine
prefetcher (XPPrefetcher). Moreover, the NVM media holds
the directory information (i.e., coherence states) for the cur-
rent implementation of the directory coherence protocol [25].

425

Thus, on any coherence state modification (e.g., reading a
memory location from a different NUMA domain), the CPU
issues directory writes to update the coherence state that
resides on the NVM media. These modifications have a huge
implication in terms of latency, and it is the root cause of
bandwidth meltdown in cross-NUMA NVM access (§3.1.1).
Optane NVM performance. The performance character-
istics of Optane NVM differ from DRAM. Not only the read
and write latency are up to 2–5× higher than DRAM, but it
also has 5× lower write bandwidth than DRAM [74]. NVM
shows asymmetric read-write performance: write is 3–5×
slower than read in latency and bandwidth [25]. In addition,
sequential access is 3–5× faster than random access [25]. For
writes, write buffering at 256-byte granularity improves the
latency for sequential pattern; meanwhile, the random pat-
tern leads to read-modified-write operations, which renders
write combining in XPBuffer ineffective, leading to write am-
plification for smaller writes. Similarly, for reads, sequential
patterns exploit locality and prefetchers in CPU and Op-
tane NVM. Meanwhile, random ones avoid prefetching and
require fetching 256-byte data.

2.1.1 System software stack for persistent memory
Direct Access Mode (DAX) enabled file systems (e.g., ext-
DAX [69], XFS-DAX [10]) mount a file system over the raw
NVM device and directly expose an NVM space associated
with a file to the program’s virtual address space using mmap.
NVM allocators [16, 27, 56] manage the mmap-ed NVM space.
Unlike DRAM allocators, an NVM allocator should guarantee
crash consistency to avoid its heap metadata corruption. By
default, one NVM heap on one NVM raw device utilizes
only NVM DIMMs and iMCs of that device, thereby under-
utilizing both NVM bandwidth and capacity of a system.

2.2 Persistent Range Indexes

We focus on range indexes that handle a large volume of
data and support the scan operation. In the rest, we use read
operation to denote lookup and scan operations and write

operation for insert, update, and delete operations.

2.2.1 B+-Tree-based persistent indexes There have been
various research efforts to design efficient persistent B+-tree
indexes [4, 8, 24, 45, 57, 76]. FastFair [24] is a lock-based
B+-tree index designed to minimize crash consistency over-
head by making the reader transient inconsistency tolerable.
BzTree [4] is a lock-free B+-tree. For lock-free implementa-
tion, it relies on Persistent Multi-word Compare-And-Swap
(PMwCAS) [65] primitive, which supports atomic and crash-
consistent multi-word updates. BzTree keeps internal nodes
immutable and performs Copy-on-Write (CoW) updates ex-
cept for updating existing child pointers. FP-Tree [57] is a
DRAM-NVM hybrid B+-tree. It places reconstructable inter-
nal nodes on faster DRAM. FP-Tree uses a hybrid concur-
rency control: HTM for internal nodes and spinlock for leaf
nodes. It uses a key fingerprint (one byte hash of a key [57])

to accelerate a lookup operation. LB+-tree [45] optimizes
the FP-tree design for Optane NVM. In particular, it leverages
an XPLine size granularity to avoid write amplification.
2.2.2 Trie-based persistent indexes Unlike the B+tree-
based indexes, there are few trie-based persistent indexes [38,
39, 48].WOART [38] is amodifiedART [40] for NVM. It uses
a slot array with unsorted entries to minimize the persistence
cost but does not support concurrent accesses. P-ART [39] is
the persistent version of concurrent ART [41] using RECIPE
guidelines [39]. For crash consistency, P-ART re-purposes a
helping mechanism to detect and fix the crash inconsistency
across restarts. However, P-ART does not guarantee durable
linearizability [30]. ROART [48] is an improved version of
P-ART for supporting efficient range queries, lower mem-
ory allocation overhead, and correctness. However, since
ROART inherits its rebalancing algorithm and index struc-
tures from ART [40], it still incurs high allocation overhead
during SMOs, as it requires more than two leaf array alloca-
tion for every split operation.

3 Design Guidelines for Persistent Indexes
We propose guidelines for designing highly performant and
scalable persistent indexes. We first extensively analyze four
representative persistent range indexes – FastFair [24], BzTree
[4], FP-Tree [57], and PDL-ART (our version of persistent
ART guaranteeing durable linearizability described in §5.1).
From the empirical analysis, we derive five findings on NVM
hardware (FH , §3.1). We then propose ten guidelines on
efficient use of system software stack (GS , §3.2), algorith-
mic considerations for persistent index (GA, §3.3), and con-
currency control (GC , §3.4), making the best use of NVM
hardware. We coined our findings and guidelines as packed,
asynchronous concurrency (PAC) guidelines.
The key PAC guidelines from a distance are that, unlike

the DRAM index, the fundamental performance-limiting fac-

tor of an NVM index is the limited bandwidth and the slow

latency of NVM. We propose that an index should 1) access

in a packed fashion to save the limited NVM bandwidth and

2) exploit asynchronous concurrency control to decouple

the long NVM latency from the critical path. Specifically, our
PAC guidelinesmake several unique contributions (FH4, FH5,
GS2,GA1,GA2,GC2) and quantify the implications of already
known findings (GS1, GA3, GC3).
3.1 Findings on NVM Hardware

Prior findings on NVM hardware As discussed in §2.1,
NVM bandwidth is limited (FH1) – a prime bottleneck in
index structures. NVM exhibits asymmetric read/write la-

tency and bandwidth (FH2). Hence, for a moderate write-
intensive workload, the write bandwidth becomes the first
bottleneck, resulting in underutilized read bandwidth. Se-
quential NVM access is preferred (FH3). Sequential reads can
hide the slow NVM latency by leveraging both the CPU
cache-line prefetcher and the NVM XPPrefetcher. Similarly,

426

sequential writes followed by cache-line flushes efficiently
use the write combining buffer (XPBuffer) in the NVM, re-
sulting in better bandwidth utilization.

3.1.1 New findings on NVM hardware

FH4. NVM’s data persistence cost is more expensive
than we think. In the current ADR-enabled systems with
volatile CPU caches, persistence instructions (e.g., clwb, sfence)
are necessary to enforce the persistence and ordering of prior
writes. Enforcing persistence is slow because it reveals the
rawNVMmedia latency. Also, the current implementation of
clwb in the current generation of Intel processors invalidates
cache lines [33]1. Thus, in current processors, persistence
incurs the cost of both flushing and cache line invalidation.
FH5. Cache coherence protocol impedes NUMA scala-
bility. Due to the limited DIMM slots in a single socket sys-
tem, multi-socket NUMA systems are necessary to provide
larger NVM capacity and higher NVM bandwidth. However,
prior research [3, 21, 74] has reported that the remote NUMA
access of Optane NVM is slow. Unfortunately, there has been
no in-depth analysis of the bandwidth meltdown issue in the
current Optane NVM systems.
We found that the directory coherence protocol is the root

cause of the NUMA bandwidth meltdown. This is evident
from Figure 2 as the performance of the FastFair plateaus
when ran using Directory coherence protocol. This is be-
cause the current Intel processor architectures rely on the
directory coherence protocol among NUMA domains, and
it stores the directory information on the 3D-Xpoint media.

0
2
4
6
8
10
12

16 32 48 64 80 96 112

M
O
ps
/s
ec

threads

Directory
Snoop

Figure 2. Performance of
FastFair using snoop and
directory coherence proto-
col for YCSB workload-A
with 64M integer keys.

Thus, on every remote read,
the coherence state change
(e.g., from “Exclusive” to “Shared”
state with bookkeeping the
remote node ID) should be
updated, causing a directory
“write” operation to the 3D-
Xpoint media. Because of this,
the remote read bandwidth is
significantly lower than the re-
mote write bandwidth. This is
detrimental because a remote

read generates both read and

write traffic. We verify this by running a 100% remote ran-

dom reads experiment in a 64-byte granularity for an 870 MB

NVM file. It generated 870 MB and 481 MB of reads and writes,

respectively, when we measured using PMWatch [29] for the

directory protocol.Meanwhile, the snoop protocol 2 improves
the FastFair throughput by 2.5×.

1We verify this by continuously using clwb and read some cache lines.
2Some servers provide options for cache coherence protocols in the BIOS
setting.

3.2 Guidelines for NVM Systems Software

GS1. Persistent memory allocation is very expensive
[FH2, FH4]. Because NVM allocators have to provide the
crash consistency of their heapmetadata on failure. They rely
on expensive crash consistency mechanisms. For example,
the Intel PMDK allocator [27] relies on UNDO and REDO log-
ging, which incurs six flush operations for one allocation and
free pair [36]. These frequent crash consistency operations
incur high overhead and generate additional NVM writes
that impact the overall performance of an index [16, 44].

0

0.2

0.4

0.6

M
op

s/
se
c

Jemalloc
PMDK

Figure 3. PDL-ART per-
formance for insert-only
workload (64M integer
keys) using the non-crash
consistent Jemalloc and
crash cosnistent PMDK
allocators.

To quantify the overhead due
to frequent memory alloca-
tion, we ran the PDL-ART us-
ing the PMDK allocator and
the modified Jemalloc. Note
that our modified Jemalloc al-
locates memory on NVM, but
it does not guarantee crash
consistency for NVM memory
allocation and free. Figure 3
shows 2× drop in performance
with the PMDK allocator due
to the expensive crash consis-
tency operations. Thus, memory allocation can severely im-
pact performance than DRAM when designing applications
for NVM.
GS2. Persistent memory allocation should be NUMA-
aware [FH4, FH5]. As discussed in §2.1.1, one NVM heap
by default uses NVM resources only in one NUMA domain
(i.e., a single-socket NVM heap). While this approach under-
utilizes precious NVM bandwidth, prior works have designed
indexes for a single socket NVMheap [8, 9, 39, 45, 76] to avoid
performance degradation due to cross-NUMA access (FH5).
Thus, after addressing the cross-NUMA bandwidth (FH5),
1) an index should exploit all NUMA domains to maximize
NVMbandwidth, and 2) the allocation should beNUMA-local
to avoid NVM communication delay. Although the findings
are in line with DRAM [15], we found that the impacts of
such issues are more pronounced in NVM. To illustrate the
importance of NVM bandwidth under-utilization, we found
that FastFair is almost 2× faster on using two NUMA do-
mains [26] than a single one with snoop coherence protocol.

3.3 Guidelines for Persistent Index Algorithm

GA1. Lookupoperation should consumeminimalNVM
bandwidth [FH1, FH2]. The lookup operation is the most
common operation (§2.2). Moreover, it is critical for high
performance because of NVM read bandwidth utilization.
We can estimate the NVM bandwidth consumption of a
lookup operation as the total NVM reads for total key com-
parisons until reaching the target key. Our worst-case ana-
lytical model for NVM bandwidth consumption of a B+tree
(BWBT ree) and a trie (BWT r ie) is as follows:

427

0

5

10

15

20

Integer String
0

100
200
300
400
500

Integer String

M
op

s/
se
c

N
VM

Re
ad

FastFair
PDL-ART

Figure 4. The performance and total NVM read (GB) of FastFair
and PDL-ART for 64M lookups for integer and string keys.

BWBtree =
⌈
logF K

⌉
· log2 F · S (1)

BWT r ie = log2 F · S + S (2)

where F , K , and S are fan-out of a node, the number of key-
value pairs in an index, and a search key length, respectively.

A B+tree performs a binary search in a node (log2 F) with
a full key comparison (S) for each level of a tree (

⌈
logF K

⌉
). A

trie performs a binary search of a partial key in a node (log2 F)
at each level. Since internal nodes of a trie encode a key, its
height cannot exceed the search key length (S), and one full
key comparison (S) is needed at the end. The above equations
show that a B+-tree consumes more NVM bandwidth than a
trie. For instance, a trie (F = 256) consumes 3.8× less NVM
IO for a lookup operation than a B+tree (F = 32) for 100M
key-value pairs of the 8-byte key. However, the actual NVM
IO would be different due to other architectural components,
including a larger access granularity (e.g., 256-byte XPLine),
hardware prefetcher, and CPU cache. To check our model is
useful in a real NVM, we ran a 100% lookup workload (YCSB
C) such that 28 threads concurrently perform 64M lookup
operations. We used two data sets with 64M key-value pairs:
8-byte integer key and 23-byte string key. Figure 4 shows
that FastFair (B+tree) does more NVM reads (7.7×) as the
key is longer (string key), and PDL-ART, which uses trie, has
3.7× higher throughput.
GA2. Read operation shouldminimizeNVMwrites [FH1,
GS1]. Lookup and scan operations can incur additional NVM
writes. For instance, pessimistic concurrency control mecha-
nisms such as mutex, spinlock, or readers-writer lock incur
NVM writes when a reader modifies the lock status. Since
NVM write bandwidth is scarce, these additional writes im-
pact the read scalability and performance. For example, we
observed that the read-only workload (YCSB Workload C: 64
M lookups using 28 threads against 64 M key-value pairs of
8 B keys) generated an additional 1.4 GB of NVM writes in
FastFair, which ideally should be close to zero. Placing the
lock on the DRAM may be an option, but it leads to addi-
tional pointer chasing while checking the lock status, and
such a design is not prefetcher-friendly.
GA3. Write operation should minimize NVM memory
allocation [GS1, FH2, FH3]. Frequent NVM allocation/free
operations can impede the scalability and performance of
an index because NVM allocators 1) incur high crash consis-
tency overhead, 2) consume the NVM write bandwidth, and
3) are often a scalability bottleneck. Hence, a persistent index
should minimize NVM allocation/free in its write operations.

0
0.1
0.2
0.3
0.4
0.5

0

1000

2000

3000

M
op

s/
se
c

N
VM

Re
ad

FastFair
PDL-ART

Figure 5. The performance and total NVM read (GB) of FastFair
and PDL-ART for 64M scan operations on 64M integer keys.

To see the performance impact of NVM allocation/free,
we ran FastFair, BzTree, PDL-ART for an insert-only work-
load (YCSB Load A: 64M insert of 8B keys and 8B values
using 28 concurrent threads on a server configured with
the snoop coherence protocol). We measured the overhead
of the PMDK allocator using Linux perf [2]. FastFair, PDL-
ART, and BzTree spent 2%, 20%, and 40% of their time in the
PMDK allocator, respectively. As a result, FastFair outper-
forms BzTree and PDL-ART by 3× and 1.2×, respectively.
FastFair embeds 30 8B-key and 8B-value pairs in a node.

It needs NVM allocation/free only when a node split/merge
occurs. Thus, it incurs the lowest NVM allocation overhead.
Unlike FastFair, PDL-ART does not embed a key-value pair
in a leaf node. Hence, it needs one NVM allocation for a key-
value pair on every insert. BzTree modifies an internal node
using the CoW technique, which incurs an NVM allocation.
GA4. Write operation should minimize NVM persist-
ence operation [FH4, GS1]. For a high performant index,
an efficient crash consistency mechanism is critical to mini-
mize additional NVM writes and expensive persistence oper-
ations (clwb and sfence). For instance, any data (e.g., permu-
tation array in FPTree [57]) that are not mandatory for cor-
rect recovery are unnecessary to persist. Thus, minimizing
persistence operations not only saves NVM write bandwidth
but also minimizes the critical section latency.
GA5. Scan operation should maximize sequential read
to NVM [FH3]. Since sequential reads in NVM are faster
than random reads, they directly affect the performance of
scan operations. Therefore, for fast scan operation, a node
structure in an index should be prefetcher friendly (i.e., se-
quential read) and cache line efficient. We ran 64M scan
operations on 64M 8-byte integer keys with 28 concurrent
threads to see how a node structure affects the scan perfor-
mance. We compared the performance and generated NVM
read (GB) of FastFair and PDL-ART in Figure 5. FastFair
embeds sorted key-value pairs in a leaf node. This enables
its scan operation to exploit the fast NVM sequential reads.
However, PDL-ART stores key-value pairs outside of a leaf
node, requiring multiple random NVM reads. As a result,
FastFair outperforms PDL-ART by 1.5× with 1.6× less reads.

3.4 Design Guidelines for Concurrency Control

GC1. Maximize concurrent access for both scalability
and full NVM bandwidth utilization. Single-threaded
access cannot fully utilize the NVM bandwidth. A prior work
reports [74] that we need eight concurrent writers and 20 or

428

0
2
4
6
8
10
12
14

0 16 32 48 64
0

2

4

6

0 16 32 48 64

M
O
ps
/s
ec

threads

A
bo

rt
/O

p

threads

64M
10M

Figure 6. Performance and the number HTM aborts per operation
in FP-Tree (50% lookup and 50% insert operations).

more concurrent readers to saturate the write and read band-
width, respectively. Thus, an optimized concurrency control
scheme of an index should fully exploit the available NVM
bandwidth by concurrently allowing readers and writers.
GC2. Minimize the blocking time of structural modifi-
cation operations. Insert or delete of a key can trigger the
structural modification operations (SMO) of an index (e.g.,
split/merge of nodes in B+-tree). Moreover, it can trigger
cascading structural modifications to ancestor nodes. An
SMO (especially when cascaded) affects scalability in many
indexes because it is in the critical path (e.g., insert or delete
of a key) and blocks other concurrent threads (or makes them
retry in a lock-free design). This performance degradation
is more severe in persistent indexes. The NVM write and
persistence operations (triggered by SMOs) are high latency
operations that lengthen the critical section, stalling other
concurrent threads. Prior studies [1, 8, 45, 57, 76] address
this issue by placing internal nodes in DRAM. Such a design
can reduce the persistence overhead. However, SMOs still
block concurrent threads and also increase the recovery time
as the internal nodes have to be rebuilt at every startup. An
ideal approach is to decouple SMOs off the critical path that
reduces the blocking time. Moreover, we can store internal
nodes on NVM to further reduce recovery time.
GC3. An index’s data size should not affect the opera-
tion progress. Large memory capacity is one of the main
benefits of using NVM. Therefore, a persistent index should
be designed to deal with a large data set and guarantee the
progress of an operation with a large data set. Persistent
indexes (e.g., FP-tree, LB+-tree) relying on HTM could suf-
fer from dealing with a large data set. Because current Intel
HTM can only support L1 cache size data, HTM could abort,
especially with a large data set due to the capacity miss.

To see the impact of HTM aborts on performance, we ran
FP-tree for 10M and 64M uniform random integer keys. We
ran a 50% lookup and 50% insert workload on a server con-
figured with the snoop coherence protocol. Figure 6 shows
that HTM aborts significantly increase with larger data sets
and more concurrent threads, substantially degrading the
performance. In the case of 56 threads and 64M keys, on
average, 5.4 aborts happened for every index operation.

3.5 Discussion

PAC guidelines for eADRmode. We expect that the PAC
guidelines are still useful in the eADR mode, in which CPU

caches are persistent. Although explicit persistence instruc-
tions, such as flushes and fences, are not necessary for the
persistent cache, we expect that the bandwidth of NVM will
remain the main performance bottleneck. In addition, the
crash consistency (for multi-pointer updates) and scalability
limitations are relevant in the eADR mode. Therefore, we
expect that the PAC guidelines and PACTree design for hard-
ware (FH5), bandwidth conservation (GA1-GA3, GS1-GS2),
and concurrency (GC1-GC3) are applicable to the eADRmode.
Applying PAC guidelines beyond persistent indexes.

We can apply PAC guidelines to other NVM software designs
beyond PACTree and persistent indexes. For instance, our
hardware findings (FH1-FH5), guidelines to conserve band-
width (GA1-GA4), and exploit concurrency (GC1-GC3) can
be applied to the design of NVM file systems. Also, PAC
guidelines can improve the in-memory storage systems that
use persistent memory as a large volatile memory. Since
persistent memory does not provide persistence, in-memory
storage systems cannot leverage design guidelines for per-
sistence. However, other guidelines such as guidelines for
NUMA awareness (GS2), conserving NVM bandwidth(GA1-
GA4), and concurrency(GC1-GC3) are valid even if persis-
tence is not provided.

4 PACTree Overview
Following the PAC guidelines, we propose PACTree, a per-
sistent and hybrid range index consisting of trie-based inter-
nal nodes (search layer) and B+Tree style leaf nodes (data
layer). In PACTree, we decouple the search layer and the
data layer—a key design aspect to fully exploit the PAC guide-
lines. This design enables PACTree to use hybrid indexes, a
critical aspect to perform packed NVM access (§4.2). Further-
more, the decoupled design exploits asynchronous concur-
rency to reduce the blocking time due to the SMOs (§4.3) and
consequently achieves high scalability. PACTree uses an op-
timized persistent version of ART, called PDL-ART (§5.1), as
its search layer and slotted leaf nodes (§5.2) as its data layer.
We designed PDL-ART by optimizing the volatile ART for
NVM, particularly by adding crash consistency and guaran-
teeing durable linearizability. The following section provides
a short background on the ART index and its concurrency
control mechanism, ROWEX.

4.1 ART Primer

ART [40, 41] is a variant of the radix trie, which is optimized
for reducing the space overhead. The radix trie stores par-
tial keys on its node, which incurs a lot of pointer chasing
overhead and space under-utilization. To improve space uti-
lization, ART adaptively expands or shrinks the node sizes
by the number of entries that are stored in the node. Also,
it employs path compression to reduce the pointer chasing
overhead, which further improves space utilization.

ART employs ROWEX (Read-Optimized Write-Exclusive)
[41], which is an optimized synchronization technique that

429

Data Node

NUMA-Aware
NVM Heap Management

Structural
Modification
Operation
(SMO)
Log

➊

➋

Updater Thread
➎

➌

Anchor Key (minimum key)

Trie Index
(PDL-ART)

Search Layer

Optimistic
Persistent
Version Lock

Data Layer

Optimistic
Persistent
Version Lock

Split or Merge
➍

Figure 7. Overall architecture of PACTree.

guarantees exclusivewrites and non-blocking reads. In ROWEX,
the per-node lock is acquired by the writer before modifying
an ART node, and updates to the node are always atomic.
This enables readers to see the consistent status of a node
and proceed without blocking.

4.2 Index Architecture

The data layer in PACTree stores the key-value pairs in a
data node, and the search layer stores partial keys in a trie to
locate the date node. The Anchor key is the smallest key of a
data node when the data node is created. It never changes
after creating the data node. Each data node keeps a specific
range of keys between two adjacent anchor keys. If a node
split (merge) happens, only the latter half of the current
(right) node is moved to the new node, thereby keeping the
anchor key of a node intact.
Search layer [GA1]. Our trie-based search layer indexes an-
chor keys for every data node. The use of a trie-based search
layer complies with GA1, as it consumes significantly less
NVM bandwidth (see Figure 4). Unlike the B+Tree, an inter-
nal node of trie keeps only the partial key, which consumes
less space, and more importantly, it incurs only partial key
comparison while traversing internal nodes. This is critical
to efficiently consume the NVM read bandwidth, given that
the NVM bandwidth becomes the first performance limiting
factor and consequently achieves better performance.
Data layer [GA3, GA5]. PACTree’s data layer is a doubly
linked list of B+-tree-like leaf nodes, called data nodes, each
containing multiple key-value pairs (see Figure 8). The slot-
ted list structure enables insert, delete, or update operations
to avoid the expensive persistent memory allocation (GA3)
and the scan operation to benefit from the sequential and lo-
calized NVM access (GA5). Moreover, we adopt two B+-tree
optimization techniques: key fingerprinting for fast lookup
and permutation array

3 for efficient scan operations.

4.3 Concurrency Control

Read-optimized concurrency control [GC1, GC3, GA2].
For scalability, PACTree maximizes the concurrent execu-
tion by using the read-optimized concurrency control schemes
3An indirection array for sorted key access in a data node [49].

(GC1). Both the data layer and the search layer relies on op-

timistic version lock. The lock provides exclusive access to a
writer and concurrent access to readers. A reader optimisti-
cally performs a read on a data node. It checks the version
number before and after the read operation. If there is a
mismatch or the version number is odd, the reader retries.
The read-optimized scheme of the optimistic version lock
provides two properties: (1) readers do not change the lock
status on NVM; hence, no writes (GA2); (2) unlike HTM
based approaches [45, 57], the progress in our lock-based
approach is not affected by data size/footprint (GC3).
Asynchronous structuralmodification [GC2,GA3,GA4].
Insert and delete operations can trigger a structural modifi-
cation. When there is no empty key-value slot for an insert,
PACTree splits the data node to secure new empty slots. We
add a new data node to the search layer for future access. A
delete operation can trigger the merging of two data nodes
and deleting the old data node from the search layer.
To avoid SMO being a scalability bottleneck, we propose

an asynchronous structural modification approach, which
decouples the expensive search layer update from the critical
path. As illustrated in Figure 7, once a data node is split (or
merged), PACTree logs which nodes are split (or merged)
to the SMO log without updating the search layer (4). A
background updater thread replays each SMO log entry to
either add a new data node to the search layer or remove an
obsolete one from the search layer (5).

However, PACTree should correctly handle the inconsis-

tency between two layers when the search layer is not synchro-

nized with the data layer. For example, a newly split node is
not reachable from the search layer until the search layer
is updated. To handle such inconsistency, we propose an
ephemeral inconsistency tolerable design to guarantee correct
operation at all times. The unsynchronized search layer will
lead to a wrong yet adjacent data node (1). Even if that
happens, PACTree can still locate a correct data node by
traversing the data layer, which is a doubly linked list, com-
paring the node’s anchor key and a search key for operation
(2). Once locating a proper data node, PACTree performs
the operation as usual (3 4). Note that our evaluation shows
the window of such inconsistency is very brief, even in the
worst case workload (see §6.8). Note that inconsistency toler-

able design in FastFair [24] is fundamentally different from
PACTree. FastFair proposes the inconsistency tolerable de-
sign to eliminate the crash consistency overhead. However,
its SMOs are still synchronous and are always on the critical
path. On the other hand, PACTree’s ephemeral inconsistency

tolerable design of the SMO is designed for the asynchronous
update of the search layer for maximizing the concurrency.

4.4 Crash Consistency

Mostly log-free crash consistency [GA4]. PACTree guar-
antees crash consistency and prevents persistent memory

430

leaks upon unexpected crashes (e.g., software crashes, sud-
den power off). PACTree does not rely on expensive logging
techniques not requiring structural modification. Instead,
it leverages the slotted list and the valid bitmap in a data
node. The valid bitmap works as a durability point for the
common case writes (§5.5), while the SMO log guarantees
crash consistency and prevents persistent memory leaks for
the writes that cause a split/merge (§5.6).
Selective persistence in a data node [FH4]. Not all infor-
mation in a data node must be persisted for crash consistency.
Specifically, a permutation array stores the indices of keys
of a data node in a sorted manner for faster scan operation.
It can be recomputed as long as PACTree guarantees consis-
tency of key-value pairs in a data node. PACTree does not
guarantee the consistency of the permutation array to avoid
persistence overhead and cache-line invalidation. Instead, it
regenerates the permutation array on demand if necessary.

4.5 Persistent Memory Management

NUMA-aware memory management [GS2, FH5]. To
fully utilize the NVM bandwidth and capacity in a multi-
socket NUMA machine, PACTree manages the per-NUMA
NVM heap (GS2). PACTree allocates persistent memory
from a NUMA-local NVM heap that avoids the costly cross-
NUMA NVM accesses for subsequent writes.

5 PACTree Design

5.1 Search Layer: PDL-ART

We choose the concurrent ART [41] for the search layer due
to its space efficient packed access and good scalability. There
are a few persistent ART variants, but they have critical limi-
tations, as discussed in §2.2.2. To overcome those limitations,
we propose Persistent Durable Linearizable ART (PDL-ART).
Besides porting the volatile memory allocation to NVM, we
made the following design changes to the volatile ART.
(1) Durable linearizability and recovery. Since ART
supports non-blocking reads (§4.1), readers can read non-
persisted writes. This violates the durable linearizability
guarantee; i.e., keys read before a crash are not guaranteed to
exist post the crash recovery. For recovery, using the ROWEX
for concurrency control (§4.1) requires resetting the per-node
lock status by visiting every ART node across crashes, which
is expensive. To overcome these issues, we employ an op-

timistic version lock with a global generation ID.Now with
an optimistic version lock, a reader cannot access the node
until the writer releases the lock after persisting the update
operation. Thus, by blocking reads, we guarantee durable
linearizability. This design choice is better in the context
of PACTree because we use PDL-ART as the search layer
that is rarely updated. Furthermore, we reset the per-node
lock states for the correct recovery with the help of a global
generation ID, which we increment whenever we start the
PDL-ART instance. Since this ID is encoded in the version

Anchor
Key

Deleted
Mark

Bitmap
(8-byte)

Version Lock
(8-byte)

Permutation
Array Version

(8-byte)

Fingerprint

Array (64 entries)

Key-value Permutation

Previous
Pointer

Next
Pointer

Array (64 entries) Array (64 entries)

Figure 8. Data node layout. Blue one will not be persisted.

lock state, the previous lock state automatically becomes
void (unlocked) after incrementing the global generation ID.
(2) Log-free crash consistency. We propose a log-free
crash consistency by leveraging the concurrency control
property of the PDL-ART. The use of version lock in the
PDL-ART gives exclusive write access, and therefore crash
consistency for the writes can simply be guaranteed by per-
sisting the store instructions in the exact same order as the
program execution order; i.e., if the store persistence order
is the same as the execution order, there can not be any in-
consistency in the event of a crash. We need to consider two
cases to persist store instructions in their execution order.

Storesmodifying only a single cache line. In this case,
the persistence order is equivalent to the program execution
order wherever a crash happens. That is because x86 archi-
tecture never reorders store instructions, and a cache line is
a persistence unit to WPQ in Optane NVM (see Figure 1).

Stores modifying multiple cache lines. In this case,
we first persist all stores, except for the node metadata. We
then write and immediately persist the metadata. This guar-
antees crash consistency because the metadata update in
ART is a linearization point when the change becomes visi-
ble. Hence, ART becomes crash consistent by clwb/sfence
before updating and persisting the metadata.
(3) Persistent memory leak prevention. ART allocates
a new node, initializes it, and atomically links it to the par-
ent node making the new node visible. If a crash happens
before persistent linking, the new node will be unreachable,
resulting in a persistent memory leak. To prevent this, PDL-
ART manages small size allocation logs on NVM to keep the
newly allocated yet not persistently linked nodes. To make
NVM allocation and logging atomic, we rely on the malloc-

to semantics of the NVM allocator, which allocates on the
NVM and persistently attaches it to the specified address
atomically. Upon recovery, PDL-ART checks all addresses
in the allocation logs whether it is reachable or not. The
non-reachable addresses are freed to avoid memory leaks.

5.2 Data Layer

The data layer is a doubly linked list of nodes, as shown
in Figure 8. It holds unsorted key-value pairs. Moreover, it
maintains a fingerprint array for fast lookup, and a permuta-
tion array for the fast scan. It also maintains an 8-byte bitmap
for marking the validity of a key-value slot. Thus, updating
the bitmap using an 8-byte atomic write is a linearization
point for one or more key changes in a data node. Each node
has an 8-byte version lock with a 4-byte generation ID and
a 4-byte version number (§5.7). PACTree reconstructs per-
mutation array across reboots by sorting keys in a data node

431

instead of persisting it as a common case optimization. We
ensure the validity of the permutation array by comparing
its version with that of the data node before every scan op-
eration. We set the number of entries to 64 on purpose for
several reasons: (1) aligning the fingerprint and permuta-
tion array to a cache line, (2) atomically updating an 8-byte
(64-bit) bitmap representing all entries in a node, and (3)
accelerating the 64-byte fingerprint matching using a single
SIMD (AVX512) instruction. For variable length string key,
PACTree stores a maximum of 32-byte key and an 8-byte
value in a node. For larger key and value size, we store the
partial key in a node then store the rest of the key and values
out of the node.

5.3 Lookup Operation

We perform a lookup operation in two phases: (1) traverse
the search layer to get to the data layer (2) and finally traverse
the data layer to get the target key.
(1) Traversing the search layer. A lookup operation first
traverses the search layer by comparing the target key with
the partial anchor keys of data nodes. If the search layer is
not synchronized with the data layer, the traversal will reach
the adjacent node, called the jump node. Otherwise, it will
directly reach the target node.
(2) Traversing the data layer. Due to the asynchronous
update of the search layer, the jump node is not guaranteed
to be the target node where the key resides, so PACTree first
checks the key range of the jump node using the anchor key.
If the target key is smaller than the anchor key of the jump
node, it traverses to the left neighbor data node, and else it
traverses to the right. The target key within the key range
means that the search layer traversal has reached directly
to the target data node, which is the common case, as we
illustrate in §6.8. On reaching the target node, PACTree first
matches the fingerprint and then compares the full key only
for those keys whose fingerprint matched. The fingerprint
matching reduces a full key comparison and improves the
lookup performance. After finding the key, it checks the
version number of the node after reaching the node. If it is
changed, PACTree restarts the data layer traversal because
of a concurrent write.

5.4 Scan Operation

The scan operation first finds the target data node of the min-
imum key of a scan range. The finding target data node is the
same as the lookup operation as we described in the previ-
ous section. After finding the target node, the scan operation
first checks whether it needs to reconstruct the permutation
array. If the node version and the permutation array version
are different, it first reconstructs the permutation array. Then
it traverses the key-value array in the order of permutation
array. When the given range of the scan operation is bigger
than the number of the key-value pairs in a single data node,
the scan operation traverses to its right neighbor data node.

While traversing the neighborhood, it acquires/releases the
optimistic version lock for each node.

5.5 Insert/Delete/Update Operations

All write operations first lookup the target node and then
acquire the version lock of the node, perform the critical
work, and finally release it.
Insert. PACTree inserts the key and value to the first empty
slot by checking the bitmap. Then it adds the fingerprint of
the key to the corresponding position in the fingerprint ar-
ray. After persisting the key-value and fingerprint, PACTree
atomically updates the bitmap slot to one.
Delete. Once PACTree locates the key in the target node,
it atomically resets the corresponding bit in the bitmap.
Update. PACTree first adds the key and updated value to
an empty slot and updates the fingerprint array accordingly.
Then it persists the added key-value pair and fingerprint.
Finally, it atomically updates the bitmap by resetting the old
key-value pair but setting the new key-value pair to one.
Crash consistency of a data node. The crash consistency
protocol of a data node is simple. All the changes except for
the bitmap should be persisted first (i.e., durability point)
then the bitmap is correspondingly updated using an 8-byte
atomic write (i.e., linearization point). Finally, PACTree re-
leases the lock after persisting the bitmap. Upon recovery,
the bitmap is the source of truth; all the bits that are set in
the bitmap array are valid keys, while the rest are ignored.

5.6 Split and Merge of a Data Node

The split and merge operations are similar to that of the
traditional B+-tree. However, our data layer is a doubly-
linked list of data nodes, so there is no cascading split and
merge operations in the data layer. Instead, the parent entry
of the newly created data node or deleted data node will be
updated to the search layer.
Split in the data layer. Split is triggered when attempting
to insert a key-value pair to a full node. Once the node lock
is acquired, a writer logs the split information in a per-thread
SMO log. Once the SMO log entry is persisted, the writer
allocates a new data node. The persistent pointer of a new
node is atomically persisted at the placeholder in the SMO log
entry by the NVMallocator to avoidmemory leaks. PACTree
copies the larger half of key-value pairs to the new data node
with associatedmetadata. And it links the left and right of the
new node to the respective left and right node of the splitting
node. After the new node is persisted, it is linked to the right
of the splitting node. The copied key-value pairs are deleted
from the splitting node by atomically updating the bitmap,
and then PACTree persists the splitting node. Finally, the
new node is linked to the left of the splitting node’s right
node and, PACTree persists the updated pointer.
Merge in the data layer. When a delete operation causes
the number of keys in two adjacent data nodes to be less

432

than half of the key array capacity (32), PACTree merges
the right data node to the left data node where a key is
being deleted. PACTree first acquires the locks of two nodes,
which will be merged, and then logs the merge information
to the per-thread SMO log. After persisting the SMO log
entry, PACTree moves the key-value pairs in the right node
to the left and updates the fingerprint and bitmap in the
left node. After persisting the left node, PACTree logically
deletes the right node by marking the deleted flag in the
node. Finally, it updates the sibling pointers.
Asynchronous update of the search layer. Abackground
updater thread replays SMO log entries to synchronize the
search layer. It merges and sorts per-thread SMO log entries
in timestamp order when the log entry is inserted. Then it
replays the entries in timestamp order, inserting the split
node’s anchor key and deleting the merged node’s anchor
key from/to the search layer. The updater thread also physi-
cally deletes the merged node that has been logically deleted.
We use Epoch Based Memory Reclamation (EBMR) tech-
niques [19, 22, 52] to ensure that no thread is reading the
merged node. An epoch is defined as all threads finish their
current operation. PACTree should wait for two epochs once
the merged node is deleted from the search layer. The first
epoch ensures that there is no new reference from the search
layer. The second epoch ensures that all new references start-
ing from the previous epoch finish their access. Thus, after
two epochs, themerged node is guaranteed to be inaccessible,
and it can be safely freed.

5.7 Optimistic Persistent Version Lock

We propose an optimistic persistent version lock for node level
locking in search and data layer. The optimistic persistent
version lock is an 8-byte version composed of a 4-byte gener-
ation ID and a 4-byte version number. It basically follows the
typical version lock protocol. A writer atomically increments
the version upon lock and unlock. When a version is an odd
number (i.e., the write lock is held), a thread should wait until
the version becomes an even number (i.e., the write lock is
released). A reader first checks if there is no writer (i.e., an
even version number). If so, it optimistically performs an
operation and then checks the version again. If two versions
vary, the operation is retried. Version lock is a good fit for
NVM because it provides high concurrency, and also readers
do not change the lock state, which saves NVM bandwidth.

The global generation ID is monotonically increased when
PACTree is loaded. When the lock is updated, the global
generation ID is associated with the version number. When
accessing the version lock, it first checks the associated gen-
eration ID and the global generation ID. Mismatched genera-
tion ID denotes that the lock has already expired, so a thread
atomically initializes the lock state to proceed. Incrementing
the global generation ID resets all locks at once.

5.8 NUMA-Aware Persistent Memory Management

Per-NUMANVMpools. PACTree creates a separate NVM
pool for search layer, data layer, and logs to enhance the spa-
tial locality of NVM data. Each NVM pool consists of a per-
NUMA sub-pool. PACTree always allocates NVM memory
from a NUMA-local pool to reduce the cross-NUMA traffic.
Compact persistent pointer representation. PACTree
divides a 64-bit pointer into two parts: The upper 16 bits
store an NVM pool ID, and the lower 48 bits stores an offset
from the NVM pool. We also allocate a base address pool
array to store the base addresses of NVM pools, which is
initialized on loading each NVM pool. PACTree gets a raw
pointer for actual NVM access by adding the base address of
an NVM heap to the pointer’s offset.

5.9 Recovery

When there are any remaining SMO log entries upon start,
PACTree starts the recovery procedure for SMO.
Recovery of a split operation. PACTree first checks
whether the SMO log entry of the new node address is NULL.
If NULL, the split is interrupted before a new node allocation.
Hence, PACTree re-executes the split operation based on
the information in the log entry. If the new node is already
allocated (i.e., non-NULL), PACTree checks whether the new
node is fully initialized by checking if the splitting node
points to the new node according to the persistence order-
ing (§5.6). If the new node is not fully initialized, PACTree
re-initializes the new node. At this point, the key-value pairs
and sibling pointers of the splitting node have not been
changed (while the bitmap may be updated). Thus, PACTree
performs the same new node initialization steps described
in §5.6. Once it is confirmed that the new node is fully initial-
ized, PACTree checks if the new node is fully inserted into
the list in the data layer. At this point, the sibling pointers of
the new node are guaranteed to be correct. Thus, PACTree
checks if the left and right nodes from the new node correctly
point to the new node. If not, PACTree corrects the sibling
pointers of the new node’s neighbor nodes. Now the recov-
ery of the data layer is done. After that, PACTree checks
whether the parent entry of the new node exists in the search
layer. If it does not exist, PACTree inserts the parent entry
to the search layer and then deletes the SMO log entry.
Recovery of a merge operation PACTree first checks if
the SMO log entry of the deleting node address is NULL. If so,
it means the node is already merged and deleted. Otherwise,
it resumes the merging of two nodes. Since PACTree does
not modify anything on the deleting node, the information
on the deleting node at this point is guaranteed to be correct.
Further, it checks whether the key-value pairs on the deleting
node are already copied to the left node. Else, it copies the
keys on the deleting node to the left following the steps
described in §5.6. At this point, two nodes are merged. Now,
PACTree checks if the deleting node is unlinked from the

433

data layer. It obtains the left and right nodes of the deleting
node from its sibling pointers, which never changes during
the merge operation. Then it checks whether left and right
nodes are still pointing to the deleting node. If so, it fixes
those pointers to remove the deleting node from the list,
which marks the completion of merging at the data layer.
PACTree checks if the search layer still indexes the deleting
node. If so, it deletes the deleting node from the search layer.
Finally, it frees the deleting node and the log entry.

6 Evaluation

Evaluation environment. We use a two-socket DCPMM
machine with Intel Xeon Platinum 8280 processors (28 phys-
ical/56 logical cores) per socket, 3.0 TB of DCPMM (1.5TB
per socket), and 768 GB of DRAM. We used gcc 8.4.0 with
-03 optimization. We set the snoop coherence protocol and
pmempoolset [26] to exploit NVMs on all NUMA domains.
Workload configuration. We used the index-microbench
[14, 66] that generates YCSB [14] workload. We use both
the integer (8-byte) and string keys (23-byte on average)
with uniform and Zipfian distribution. The value size is 8-
byte, which is the default setting of the index-microbench
and is used in previous studies [7, 24, 38, 57, 75]. We do
64M operations after populating the indexes using 64M keys
except for the LOAD A evaluation. Note that since most of
the prior indexes do not support the update operation, we
replace the update operation to insert operation similar to
the previous work [39]. We include the evaluation results
for only the Zipfian distribution due to the space limitation.
The performance trends are similar for both the uniform and
Zipfian distributions.
Target comparisons. Weevaluated and compared PACTree
with all the available and usable state-of-the-art represen-
tative indexes. For FPTree [57] evaluation, we got the lat-
est binary from the authors, which is more optimized than
the original one. We did not include LB+-tree [45] because
its open-sourced version is unstable due to HTM aborts,
and it does not implement a software fallback mechanism.
Both the LB+Tree [45] and uTree [8] are variants of hybrid
DRAM+PM B+-tree indexes, so FPTree is a representative
index for such hybrid indexes. We also evaluated the other
state-of-the-art B+tree and trie indexes such as BzTree [4]
(lock-free B+tree), FastFair [24] (logless crash consistency),
and PDL-ART. We do not present string keys numbers for
FPTree because the author’s provided binary does not sup-
port variable-length keys. For a fair comparison, we ported
all the indexes to use the PMDK allocator [28].

6.1 Performance and Scalability Evaluation

PACTree vs B+Tree indexes. Figure 9 and Figure 10 show
the performance and scalability of PACTree and the state-
of-the-art B+tree indexes. For the write-intensive workloads
(W-A, L-A), PACTree performs up to 4× better than all the

other B+tree indexes; this can be attributed to the asynchro-
nous search layer update in PACTreewhile the other B+Tree
indexes experience high latency in the critical path due to
the SMOs. For the read-intensive workloads (W-B, W-C, W-
E), PACTree outperforms all the other B+tree indexes by up
to 3.2×. The primary reason is the trie-based search layer
in the PACTree which incurs only a partial key comparison
to get to the target node. The B+tree indexes require full
key comparisons, which not only increase the read latency
but also consume more NVM bandwidth which ultimately
becomes a performance bottleneck. Apart from the afore-
mentioned benefits, PACTree has other design benefits over
the existing B+tree indexes, which we discuss below.
PACTree vs BZTree. For write-intensive workloads, the
main performance bottleneck in BZTree comes from a large
number of NVM memory allocations and a high number
of clwb/sfence incurred per insert operation due to the use
of PMWCAS. Further, BZTree spends about 40% of its time
in memory allocation, and in total, it requires at least 15
flushes per insert operation. Alternatively, with the slotted
leaf node, memory allocation overhead in PACTree can be
amortized, and with the asynchronous search layer update,
the number of clwb/sfence in the critical path is significantly
reduced. Also, with slotted leaf nodes, PACTree can exploit
the fast sequential reads for the range scan while BZTree
experiences overhead mainly from additional dereferencing
and snapshotting for every scan operation.
PACTree vs FPTree. The performance of FPTree slumps
for higher thread counts (except forW-C) due to HTM aborts.
Even for lower thread counts (< 32), PACTree outperforms
FPTree by up to 1.5× across all workloads. Although FPTree
stores its internal nodes on the DRAM, still the SMOs happen
in the critical path but, in PACTree, though the internal
nodes are on the NVM, the SMOs are off the critical path and
consequently have a better write performance than FPTree.
For instance, FPTree performs on-par with PACTree for
read-only workload C, but even for a smaller write ratio (e.g.,
W-B), FPTree experiences a dip in performance due to the
SMOs in the critical path.
PACTree vs FastFair. An interesting performance trend
in FastFair is that its performance drops up to 3× for string
keys than that of the integer keys. This is because the key-
value pairs are embedded in the leaf node for the integer keys,
which makes FastFair cache line efficient. Meanwhile, for
string keys, the leaf node contains only pointers to the keys,
which incurs additional pointer chasing and consequently a
poor performance. Alternatively, PACTree shows a similar
performance trend for both the string and integer type keys.
PACTree vs PDL-ART. PACTree performs up to 3× bet-
ter than PDL-ART across all theworkloads. Similar to BZTree,
PDL-ART is NVM allocation heavy; i.e., each insert operation
incurs an NVM allocation, and hence it is ∼3× slower than
PACTree for write-intensive workloads. Also, in PDL-ART,

434

0

5

10

15

0 16 32 48 64 80 96 112
0

5

10

15

20

25

0 16 32 48 64 80 96 112
0

10

20

30

40

50

0 16 32 48 64 80 96 112
0
10
20
30
40
50
60

0 16 32 48 64 80 96 112
0

3

6

9

12

15

0 16 32 48 64 80 96 112

Th
ro
ug

hp
ut

(M
op

s/
se
c)

threads

LOAD A (L-A)
PACTree

threads

WORKLOAD A (W-A)
PDL-ART

threads

WORKLOAD B (W-B)
BzTree

threads

WORKLOAD C (W-C)
FastFair

threads

WORKLOAD E (W-E)

Figure 9. Performance comparison of persistent indexes for YCSB workloads of string keys with Zipfian distribution.

0

5

10

15

20

25

0 16 32 48 64 80 96 112
0
5
10
15
20
25
30
35

0 16 32 48 64 80 96 112
0
10
20
30
40
50
60
70

0 16 32 48 64 80 96 112
0
10
20
30
40
50
60
70
80

0 16 32 48 64 80 96 112
0
5
10
15
20
25
30

0 16 32 48 64 80 96 112

Th
ro
ug

hp
ut

(M
op

s/
se
c)

threads

LOAD A (L-A)

PACTree

threads

WORKLOAD A (W-A)

PDL-ART

threads

WORKLOAD B (W-B)

BzTree

threads

WORKLOAD C (W-C)

FastFair

threads

WORKLOAD E (W-E)

FPTree

Figure 10. Performance comparison of persistent indexes for YCSB workloads of integer keys with Zipfian distribution.

0

5

10

15

LA WA WB WC WE

Th
ro
ug

hp
ut

(M
op

s/
se
c) PACTREE

PDL-ART
BZTREE

FAST-FAIR
FPTREE

Figure 11. Performance comparison of persistent indexes for uni-
form YCSB workloads on a low bandwidth NVM machine.

the key-value pairs are not embedded in its leaf nodes; in-
stead, it stores a pointer to the key-value pairs. This incurs
additional pointer dereference, which is not an NVM friendly
design. Consequently, PDL-ART’s range scan performance is
up to 2× slower than the PACTree. Although PACTree uses
PDL-ART as its search layer, it uses a slotted leaf node. With
the slotted leaf nodes, NVM allocation overhead in PACTree
is significantly reduced, and moreover, it enables a better
spatial locality that efficiently uses the hardware cache and
the hardware prefetcher to hide the latency. This enables a
high write and range scan performance in PACTree.

6.2 Performance on Low Bandwidth NVMmachine

Figure 11 presents the performance of PACTree and the
other persistent indexes on a two-socket NVM server with
lower cumulative NVM bandwidth and capacity than our de-
fault evaluation platform. Each socket consists of 16 physical
cores and 256 GB NVM (2×128GB). The cumulative NVM
bandwidth is about 3× lesser than our default evaluation plat-
form. We present the performance with 32 threads. The per-
formance gap between PACTree and PDL-ART is widened
by up to 0.5× for write-intensive workloads and 1.5× for
read-intensive workloads. With lower NVM bandwidth, asyn-

chronous search layer update becomes much more critical as

it reduces the write latency in the critical path and consumes

relatively less NVM bandwidth in the critical path.

0
1
2
3
4
5
6

LA WA WB WC WE

Re
la
tiv

e
pe
rf
or
m
an
ce ART(SC)
+Per-NUMA Pool

+Slotted Leaf
+Selective Persistence

+Aysnc Update
DRAM SL

Figure 12. Factor analysis of PACTree: 64M Zipfian string keys
with 28 concurrent threads.

6.3 Factor Analysis for PACTree Design

Figure 12 presents the factor analysis on PACTree. We start
with the PDL-ART and add proposed design features.
+ Per-NUMA pool. For write-intensive workloads, adding
per-NUMA NVM pool improves the performance by up to
2×. With per-NUMA pool, writers allocate memory locally,
and they can fully utilize the NVM bandwidth of the system.
+ Slotted leaf nodes. Incorporating slotted leaf nodes to
PDL-ART improves the performance by up to 2.5× across all
workloads except for read-only Workload C. Unlike the leaf
nodes in PDL-ART, slotted leaf nodes do not incur NVMmem-
ory allocation for every insert operation, thereby amortizing
the allocation overhead. For Workload C, adding slotted leaf
nodes shows a slight dip (<10%) in performance as it requires
one fingerprint match operation, indirection to key-value
pair, and full key comparisons.
+ Selective persistence. Selective persistence for data node
improves the scan performance by up to 11% because it does
not incur blocking by issuing persistence instruction.
+ Asynchronous search layer update. Adding asynchro-
nous update improves the performance by up to 30% for
write-intensive workloads. Updating the search layer in the
background significantly reduces the critical path latency of
write operations.

435

0

5000

10000

15000

20000

99 99.999.9
9
99.9

99
0

700
1400
2100
2800
3500

99 99.999.9
9
99.9

99
0
40
80
120
160
200

99 99.999.9
9
99.9

99
0

600
1200
1800
2400
3000

99 99.999.9
9
99.9

99

La
te
nc
y
(u
se
c)

Percentile(%)

Workload A
PACTree

BzTree

Percentile(%)

Workload B
PDL-ART

Percentile(%)

Workload C
FastFair

Percentile(%)

Workload E
FPTree

Figure 13. Tail latency comparison for integer keys with uniform
distribution and 56 threads.

0

0.5

1

1.5

2

LA WA WB WC WE
0

0.2

0.4

0.6

0.8

1

LA WA WB WC WE

Th
ro
ug

hp
ut

(M
op

s/
se
c)

Integer workloads

PACTREE
PDL-ART
BZTREE

FAST-FAIR
FPTREE

String workloads

PACTREE
PDL-ART

BZTREE
FAST-FAIR

Figure 14. Single threaded performance of persistent indexes.

- Search layer on DRAM. We also evaluate the effect of
DRAM for the search layer as in the previous works [1, 8,
46, 57, 75, 76] for reference. Our evaluation shows that the
DRAM-based search layer is not that beneficial for PACTree
(less than 10% increase). As the search layer is updated asyn-
chronously in the background, there is no performance bene-
fit in placing it on the DRAM. The saved DRAM consumption
can be used for application or for further performance opti-
mization at the index level (e.g., caching hot items [64]).
6.4 Tail Latency

We evaluate the latency distributions of the persistent in-
dexes. We sampled 10% of operations to reduce the mea-
surement overhead as in the previous study [44]. As shown
in Figure 13, PACTree shows low tail latency up to 20× in
write-intensive workloads and shows comparable latency in
the read-intensive workloads due to its asynchronous up-
date, amortized NVM allocation overhead by using B+tree
leaf nodes, and trie-based search layer. BzTree and PDL-ART
show high tail latency because of their high memory allo-
cation overhead, and BZTree also suffers from indirection
overhead because of its lock-free design. FPTree shows the
worst tail latency for Workload E because it needs additional
sorting and filtering for scan operations.
6.5 Single Thread Performance

We compare the single-threaded performance of the persis-
tent indexes. As shown in Figure 14, PACTree shows similar
or up to 3× better performance than the other persistent
indexes because PACTree’s optimistic version locks do not
impose any overhead when there is no contention.
6.6 Skew Test

Figure 15 shows the performance of PACTree on the Zip-
fian workloads with 28 threads and 56 threads. We evalu-
ate PACTree using two write-intensive workloads: (1) 50%
lookup + 50% update and (2) 50% lookup + 50% insert with

0
5
10
15
20
25

0.5 0.6 0.7 0.8 0.9 0.99
0
2
4
6
8
10
12
14

0.5 0.6 0.7 0.8 0.9 0.99Th
ro
ug

hp
ut

(M
op

s/
se
c)

50% lookup + 50% update 50% lookup + 50% insert

28 Threads 56 Threads

Figure 15. Performance of PACTree for varying Zipfian coefficient.

varying the Zipfian coefficient values. In the 50% lookup +
50% update workload, PACTree shows better performance
for highly skewed workloads because of the better cache-
locality of the data nodes. Also, optimizations in PACTree
make the critical path in update shorter and thus delivering
a good performance. In the 50% lookup + 50% insert work-
load, PACTree shows stable performance as it can reduce the
critical path by updating the search layer asynchronously.

6.7 Impact of Asynchronous Search Layer Update

One potential downside of asynchronous search layer update
is that a long traversal from a jump node to a target node
when two layers are not synchronized. To investigate this,
we ran write-intensive Workload A with 112 threads and
measured the distance between a jump node and a target
node. Our results show that in 68% of cases, the search layer
directly leads to the target layer. In 30% of cases, it requires
only one hop traversal from a jump node to a target node.

6.8 Recovery

We conducted the recovery evaluation on PACTree by inject-
ing a crash 100 times using SIGKILL, similar to the previous
studies [11, 39, 44]. We confirmed that our PACTree suc-
cessfully recovered from every crash and ensured that all
previously written keys could be accessed.

7 Conclusion
Designing a high performance persistent index goes beyond
just making DRAM index crash consistent. There are NVM
unique design factors that are critical in NVM rather than in
DRAM. Based on our thorough analysis of prior persistent
indexes on real NVM hardware, we proposed the PAC guide-
lines. Following the PAC guidelines, we designed PACTree,
which packs partial keys in internal nodes, and updates in-
ternal nodes in an asynchronous and concurrent manner.
Our evaluation shows that PACTree significantly outper-
forms state-of-the-art persistent range indexes in terms of
performance, scalability, and tail latency.

Acknowledgement
We thank our shepherd Kang Chen and the anonymous re-
viewers for their insightful comments. This work was sup-
ported in part by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2014-3-00035) and National Research
Foundation of Korea (NRF) (No. NRF-2021R1A6A3A03046359).

436

References
[1] Key/Value Datastore for Persistent Memory. https://github.com/

pmem/pmemkv.
[2] perf: Linux profiling with performance counters , 2020. https://perf.

wiki.kernel.org/index.php/Main_Page.
[3] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,

Youngjin Kwon, Simon Peter, Waleed Reda, Henry N. Schuh, and
Emmett Witchel. Assise: Performance and availability via client-local
NVM in a distributed file system. November.

[4] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake
Larson. Bztree: A High-performance Latch-free Range Index for Non-
volatile Memory. In Proceedings of the 44th International Conference

on Very Large Data Bases (VLDB), Rio De Janerio, Brazil, August 2018.
[5] Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-behind Log-

ging. In Proceedings of the 42nd International Conference on Very Large

Data Bases (VLDB), New Delhi, India, March 2016.
[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Rav-

ishankar Chandhiramoorthi, and Diego Didona. SILK: Preventing
Latency Spikes in Log-Structured Merge Key-Value Stores. In Pro-

ceedings of the 2019 USENIX Annual Technical Conference (ATC), pages
753–766, Renton, WA, July 2019.

[7] Shimin Chen and Qin Jin. Persistent B+-trees in Non-volatile Main
Memory. In Proceedings of the 41st International Conference on Very

Large Data Bases (VLDB), Hawaii, USA, September 2015.
[8] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu.

Utree: A persistent b+-tree with low tail latency. Proc. VLDB Endow.,
13(12):2634–2648, July 2020.

[9] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. Lock-free
Concurrent Level Hashing for Persistent Memory. In Proceedings of

the 2020 USENIX Annual Technical Conference (ATC), pages 799–812,
Boston, MA, July 2020.

[10] Dave Chinner. xfs: updates for 4.2-rc1., 2015.
[11] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-

jesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making
Persistent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the 16th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), Newport Beach, CA, March 2011.
[12] Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus.

Fine-grain checkpointing with in-cache-line logging. In Proceedings of

the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, page 441–454, New
York, NY, USA, April 2019. Association for Computing Machinery.

[13] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of the 22nd ACM

Symposium on Operating Systems Principles (SOSP), Big Sky, MT, Octo-
ber 2009.

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC),
pages 143–154, Indianapolis, Indiana, USA, June 2010. ACM.

[15] Mohammad Dashti, Alexandra Fedorova, Justin R. Funston, Fabien
Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quéma, and Mark
Roth. Traffic management: a holistic approach to memory placement
on NUMA systems. In Proceedings of the 18th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 381–394, Houston, TX, March 2013.
[16] Anthony Demeri, Wook-Hee Kim, R. Madhava Krishnan, Jaeho Kim,

Mohannad Ismail, and ChangwooMin. POSEIDON: Safe, Fast and Scal-
able Persistent Memory Allocator. In Proceedings of the 21st ACM/IFIP

International Middleware Conference (Middleware 2020), 2020.

[17] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and Protection in the ZoFS User-Space NVM File Sys-
tem. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles (SOSP), Ontario, Canada, October 2019.
[18] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings of the 9th European

Conference on Computer Systems (EuroSys), Amsterdam, The Nether-
lands, April 2014.

[19] Keir Fraser. Practical lock-freedom. Technical report, University of
Cambridge, Computer Laboratory, 2004. No. UCAM-CL-TR-579.

[20] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Ke-
shav Pingali. Single machine graph analytics on massive datasets using
intel optane dc persistent memory. In Proceedings of the 46th Interna-

tional Conference on Very Large Data Bases (VLDB), pages 1304–1318,
Tokyo, Japan, August 2020.

[21] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Understanding
the Idiosyncrasies of Real Persistent Memory. Proc. VLDB Endow.,
14:626–639, 2021.

[22] Thomas EHart, Paul EMcKenney, Angela Demke Brown, and Jonathan
Walpole. Performance of memory reclamation for lockless synchro-
nization. Journal of Parallel and Distributed Computing, 67(12):1270–
1285, 2007.

[23] Takahiro Hirofuchi and Ryousei Takano. The preliminary evaluation
of a hypervisor-based virtualization mechanism for intel optane dc
persistent memory module. arXiv preprint arXiv:1907.12014, 2019.

[24] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable Transient Inconsistency in Byte-addressable Persistent B+-
tree. In Proceedings of the 16th USENIX Conference on File and Storage

Technologies (FAST), pages 187–200, Oakland, California, USA, Febru-
ary 2018.

[25] Intel. Chapter 12. Intel Optane DC Persistent Memory, Intel 64
and IA-32 Architectures Optimization Reference Manual. https:
//software.intel.com/content/www/us/en/develop/download/intel-
64-and-ia-32-architectures_optimization-reference-manual.html.

[26] INTEL. poolset - persistent memory pool configuration file format.
https://pmem.io/pmdk/manpages/linux/v1.4/poolset/poolset.5.

[27] INTEL. Persistent Memory Development Kit, 2019. http://pmem.io/.
[28] INTEL. PMDKman page: pmemobj_alloc, 2019. http://pmem.io/pmdk/

manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3.
[29] Intel. PMWatch (PersistentMemoryWatch), 2020. https://github.com/

intel/intel-pmwatch.
[30] Joseph Izraelevitz, Hammurabi Mendes, and Michael Scott. Lineariz-

ability of Persistent Memory Objects Under a Full-System-Crash Fail-
ure Model. In Proceedings of the 30st International Conference on Dis-

tributed Computing (DISC), Paris, France, September 2016.
[31] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R
Dulloor, et al. Basic performance measurements of the intel optane dc
persistent memory module. arXiv preprint arXiv:1903.05714, 2019.

[32] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. SplitFS: Reducing Software
Overhead in File Systems for Persistent Memory. In Proceedings of the

27th ACM Symposium on Operating Systems Principles (SOSP), Ontario,
Canada, October 2019.

[33] Anuj Kalia, David Andersen, and Michael Kaminsky. Challenges and
solutions for fast remote persistent memory access. In Proceedings of

the 11th ACM Symposium on Cloud Computing (SoCC), Virtual, October
2020.

[34] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. Redesigning LSMs for Non-
volatile Memory with NoveLSM. In Proceedings of the 2018 USENIX

Annual Technical Conference (ATC), Boston, MA, July 2018.

437

https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures_optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures_optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures_optimization-reference-manual.html
https://pmem.io/pmdk/manpages/linux/v1.4/poolset/poolset.5
http://pmem.io/
http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3
http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3
https://github.com/intel/intel-pmwatch
https://github.com/intel/intel-pmwatch

[35] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and
Youjip Won. NVWAL: Exploiting NVRAM inWrite-Ahead Logging. In
Proceedings of the 21st ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),
Atlanta, GA, April 2016.

[36] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony
Demeri, ChangwooMin, and Sudarsun Kannan. Durable Transactional
Memory Can Scale with Timestone. In Proceedings of the 25th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), Lausanne, Switzerland,
March 2020.

[37] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles

(SOSP), Shanghai, China, October 2017.
[38] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and SamH.

Noh. WORT: Write Optimal Radix Tree for Persistent Memory Storage
Systems. In Proceedings of the 15th USENIX Conference on File and

Storage Technologies (FAST), Santa Clara, California, USA, February–
March 2017.

[39] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. RECIPE: Converting Concurrent DRAM Indexes
to Persistent-Memory Indexes. In Proceedings of the 27th ACM Sympo-

sium on Operating Systems Principles (SOSP), Ontario, Canada, October
2019.

[40] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. In Proceedings of the 29th IEEE

International Conference on Data Engineering (ICDE), pages 38–49,
Brisbane, Australia, April 2013.

[41] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
The ART of Practical Synchronization. In Proceedings of the Interna-

tional Workshop on Data Management on New Hardware, pages 3:1–3:8,
San Francisco, California, June 2016.

[42] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
Kvell: the design and implementation of a fast persistent key-value
store. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles (SOSP), pages 447–461, Ontario, Canada, October 2019.
[43] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and

Thomas Willhalm. Evaluating persistent memory range indexes. In
Proceedings of the 45th International Conference on Very Large Data

Bases (VLDB), pages 574—-587, Los Angeles, CA, August 2019.
[44] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and

Thomas Willhalm. Evaluating Persistent Memory Range Indexes. In
Proceedings of the 45th International Conference on Very Large Data

Bases (VLDB), Los Angeles, CA, August 2019.
[45] Jihang Liu, Shimin Chen, and Lujun Wang. LB+-Trees: Optimizing

Persistent Index Performance on 3DXPoint Memory. Proc. VLDB

Endow., 13(7):1078–1090, 2020.
[46] Jihang Liu, Shimin Chen, and Lujun Wang. LB+Trees: Optimizing

Persistent Index Performance on 3DXPoint Memory. In Proceedings

of the 46th International Conference on Very Large Data Bases (VLDB),
Tokyo, Japan, August 2020.

[47] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. WiscKey: Separating Keys
from Values in SSD-conscious Storage. In Proceedings of the 14th

USENIX Conference on File and Storage Technologies (FAST), pages 133–
148, Santa Clara, California, USA, February 2016.

[48] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu,
Hongbo Kang, and Yongwei Wu. ROART: Range-query optimized
persistent ART. In Proceedings of the 19th USENIX Conference on File

and Storage Technologies (FAST), pages 1–16, Virtual, February 2021.
[49] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache Crafti-

ness for Fast Multicore Key-value Storage. In Proceedings of the 7th

European Conference on Computer Systems (EuroSys), pages 183–196,
Bern, Switzerland, April 2012.

[50] Ajit Mathew and Changwoo Min. HydraList: A Scalable In-Memory
Index Using Asynchronous Updates and Partial Replication. In Pro-

ceedings of the 46th International Conference on Very Large Data Bases

(VLDB), Tokyo, Japan, August 2020.
[51] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas

Dilger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux Symposium,
2007.

[52] Paul E. McKenney, Jonathan Appavoo, Andy Kleen, Orran Krieger,
Rusty Russell, Dipankar Sarma, and Maneesh Soni. Read-Copy Update.
In Ottawa Linux Symposium, OLS, 2002.

[53] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beom-
seok Nam. Write-Optimized Dynamic Hashing for Persistent Memory.
In Proceedings of the 17th USENIX Conference on File and Storage Tech-

nologies (FAST), Boston, MA, February 2019.
[54] Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki Moon. SQLite

Optimization with Phase Change Memory for Mobile Applications.
In Proceedings of the 41st International Conference on Very Large Data

Bases (VLDB), pages 1454–1465, Hawaii, USA, September 2015.
[55] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high performance file system

for non-volatile main memory. EuROSYS16.
[56] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,

Thomas Willhalm, and Grégoire Gomes. Memory Management Tech-
niques for Large-scale Persistent-main-memory Systems. In Proceed-

ings of the 43rd International Conference on Very Large Data Bases

(VLDB), TU Munich, Germany, August 2017.
[57] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and

Wolfgang Lehner. FPTree: A Hybrid SCM-DRAM Persistent and Con-
current B-Tree for Storage Class Memory. In Proceedings of the 2015

ACM SIGMOD/PODS Conference, San Francisco, CA, USA, June 2016.
[58] Jong-Hyeok Park, Gihwan Oh, and Sang-Won Lee. SQL Statement

Logging for Making SQLite Truly Lite. In Proceedings of the 43rd

International Conference on Very Large Data Bases (VLDB), pages 513–
525, TU Munich, Germany, August 2017.

[59] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. PebblesDB: Building Key-Value Stores using Fragmented Log-
Structured Merge Trees. In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), pages 497–514, Shanghai, China,
October 2017.

[60] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-Tree
Filesystem. Trans. Storage, 9(3):9:1–9:32, August 2013.

[61] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, and Sam H.
Noh. Failure-Atomic Slotted Paging for Persistent Memory. In Proceed-

ings of the 22nd ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), Xi’an,
China, April 2017.

[62] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. Persistent memory i/o primitives. In Proceedings

of the International Workshop on Data Management on New Hardware,
pages 1—-7, Amsterdam, The Netherlands, July 2019.

[63] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. Consistent and durable data structures for non-
volatile byte-addressable memory. In Proceedings of the 9th USENIX

Conference on File and Storage Technologies (FAST), San Jose, California,
USA, February 2011.

[64] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A black-box
approach to numa-aware persistent memory indexes. In Proceedings

of the 15th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI), Virtual, November 2021.
[65] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. Easy Lock-

Free Indexing in Non-Volatile Memory. In Proceedings of the 34th IEEE

International Conference on Data Engineering (ICDE), pages 461–472,
Paris, France, April 2018.

438

[66] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. Building a Bw-Tree
Takes More Than Just Buzz Words. In Proceedings of the 2018 ACM

SIGMOD/PODS Conference, pages 473–488, Houston, TX, USA, June
2018.

[67] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swan-
son, and Jishen Zhao. Characterizing and modeling non-volatile mem-
ory systems. In 2020 53rd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 496–508, Virtual, October 2020.
[68] MichèleWeiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier

Iffrig, Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jack-
son, and Mark Parsons. An early evaluation of intel’s optane dc per-
sistent memory module and its impact on high-performance scientific
applications. In Proceedings of the 2019 International Conference for

High Performance Computing, Networking, Storage and Analysis (SC)

(SC’19), pages 1—-19, Denver, CO, November 2019.
[69] Matthew Wilcox. Add Support for NV-DIMMs to Ext4., 2014.
[70] X. Wu and A. L. N. Reddy. Scmfs: A file system for storage class

memory. In Proceedings of the 2014 International Conference for High

Performance Computing, Networking, Storage and Analysis (SC) (SC’14),
Seattle, WA, November 2011.

[71] Xingbo Wu, Fan Ni, and Song Jiang. Wormhole: A Fast Ordered Index
for In-memory Data Management. In Proceedings of the 14th European

Conference on Computer Systems (EuroSys), pages 18:1–18:16, Dresden,
Germany, March 2019.

[72] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A Hybrid In-
dex Key-Value Store for DRAM-NVMMemory Systems. In Proceedings

of the 2017 USENIX Annual Technical Conference (ATC), Santa Clara,
CA, July 2017.

[73] Jian Xu and Steven Swanson. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In Proceedings of the

14th USENIX Conference on File and Storage Technologies (FAST), Santa
Clara, California, USA, February 2016.

[74] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An Empirical Guide to the Behavior and Use of Scalable
Persistent Memory. In Proceedings of the 18th USENIX Conference on

File and Storage Technologies (FAST), Santa Clara, CA, February 2020.
[75] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong

Yong, and Bingsheng He. Nv-tree: Reducing consistency cost for nvm-
based single level systems. In Proceedings of the 13th USENIX Conference

on File and Storage Technologies (FAST), Santa Clara, California, USA,
February 2015.

[76] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. DP-
Tree: Differential Indexing for Persistent Memory. Proc. VLDB Endow.,
13(4):421–434, December 2019.

[77] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-
Performance Hashing Index Scheme for Persistent Memory. In Pro-

ceedings of the 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), Carlsbad, CA, October 2018.

439

	Abstract
	1 Introduction
	2 Background
	2.1 Non-Volatile Memory
	2.2 Persistent Range Indexes

	3 Design Guidelines for Persistent Indexes
	3.1 Findings on NVM Hardware
	3.2 Guidelines for NVM Systems Software
	3.3 Guidelines for Persistent Index Algorithm
	3.4 Design Guidelines for Concurrency Control
	3.5 Discussion

	4 PACTree Overview
	4.1 ART Primer
	4.2 Index Architecture
	4.3 Concurrency Control
	4.4 Crash Consistency
	4.5 Persistent Memory Management

	5 PACTree Design
	5.1 Search Layer: PDL-ART
	5.2 Data Layer
	5.3 Lookup Operation
	5.4 Scan Operation
	5.5 Insert/Delete/Update Operations
	5.6 Split and Merge of a Data Node
	5.7 Optimistic Persistent Version Lock
	5.8 NUMA-Aware Persistent Memory Management
	5.9 Recovery

	6 Evaluation
	6.1 Performance and Scalability Evaluation
	6.2 Performance on Low Bandwidth NVM machine
	6.3 Factor Analysis for PACTree Design
	6.4 Tail Latency
	6.5 Single Thread Performance
	6.6 Skew Test
	6.7 Impact of Asynchronous Search Layer Update
	6.8 Recovery

	7 Conclusion
	References

